Теплоизоляционные характеристики стекла

Задать вопрос
Хотите узнать больше об услуге? Спросите нас! 

2.4 — Теплоизоляция

2.4.1 Прохождение тепла через остекление

Разница в температуре между двумя точками любого тела вызывает перенос тепла от горячей точки к холодной.

Теплопроводность происходит различными путями:

  • теплопередача, т.е. внутри самого материала. Тепло передается последовательно от одной молекулы к другой, например, когда металлический стержень прогревается весь при нагревании с одного конца
  • конвекция в жидкостях и газах. Разность температур создает разницу в плотности. Молекулы из более легких теплых участков поднимаются вверх, в то время как холодные массы движутся в противоположном направлении; эти перемещения приводят к выравниванию температур, например, так происходит при нагревании кастрюли с водой
  • излучение: любое нагретое тело испускает энергию в форме электромагнитного излучения.

Оно пересекает область, прозрачную для волн; но когда волны встречают препятствие, они отдают часть своей энергии препятствию, которое в свою очередь испускает тепло. Этот путь переноса тепла работает и в вакууме, например, в случае солнечного излучения или электрической лампочки.

Конструкция стеклопакета позволяет ограничить потерю тепла путем теплопередачи через стекло благодаря наличию между двумя стеклами изолирующего пространства, заполненного осушенным воздухом или инертным газом.

Фундаментальные механизмы теплопередачи через остекление (в случае, когда наружная температура ниже температуры в помещении)

2.4.2 Теплопередача и теплопроводность

Вводная информация

Плотность теплового потока q (Вт/м2) в секунду, проходящего через остекление из теплой среды в холодную, определяется следующейформулой:

где Θi и Θе температуры воздуха внутри и снаружи помещения

• R сопротивление теплопередаче остекления м.2 K/Вт

• U = 1/R коэффициент теплопередачи остекления Вт/(м2К)

Коэффициент теплопередачи U (ранее k)

Определяет количество тепла, прошедшее через остекление, в установившемся режиме через единицу площади поверхности при разнице температур воздуха по разные стороны в 1°C.

Количество тепла в секунду Q (Вт), проходящее через остекление площадью поверхности S (м2) из теплой атмосферы в холодную составляет, соответственно:

Q = SU (Θi - Θе)

Для твердого изотропного вещества сопротивление теплопередаче R определяется как отношение его толщины e (м) к теплопроводности λ Вт/[м<):

Для минимизации теплопередачи и обеспечения максимальной теплоизоляции необходимо достичь минимально возможного значения коэффициента теплопередачи Ug остекления (т.е. сопротивление остекления теплопередаче R должно быть максимально высоким).

Стандарт EN 673 в деталях описывает методику расчета коэффициента теплопередачи остекления Ug. Значение, полученное с использованием данного расчета, представляет собой величину Ug в центральной точке остекления, т.е. исключая краевые зоны, вызванные наличием дистанционной рамки и рамы остекления, влияющие на передачу тепла

В следующей таблице показаны значения коэффициента теплопередачи различных типов остекления.

Коэффициент Ug для различных типов остекления [Вт/(мК)]

Состав

DGU

DGU High performance с iplus Advanced 1.0 (#3)

TGU с iplus LS (#2 and 3)

воздух

воздух

90%

аргон

90%

криптон

воздух

90%

аргон

90%

криптон

4/12 / 4

2,9

1,5

1,2

1,0

1,0

0,8

0,6

4/14 / 4

2,8

1,3

1,1

1,0

0,9

0,7

0,6

4 / 15 / 4

2,7

1,3

1,0

1,0

0,9

0,7

0,6

4/16/4

2,7

1,3

1,0

1,0

0,9

0,7

0,6

Коэффициент теплопроводности λ

Определяет количество тепла, прошедшее за 1 с через панель толщиной 1 м и площадью поверхности 1 м2 при разнице температур между поверхностями в 1°C.

Теплопроводность стекла составляет 1 Вт/(мK). Оно не является теплоизоляционным материалом. Теплоизоляционным считается материал с коэффициентом теплопроводности менее 0,065 Вт/(мK).

2.4.3 Различные типы изолирующего остекления

Стандартный однокамерный стеклопакет

Стандартный однокамерный (двойной) стеклопакет изготовлен из двух листов стекла с дистанционной рамкой и полостью, заполненной осушенным воздухом. Поскольку воздух обладает теплопроводностью 0,025 Вт/(мК) (при 100C), при этом теплопроводность стекла равна 1,0 Вт/(мК), воздушная прослойка улучшает термоизоляционные свойства и снижает коэффициент Ug остекления.

Однокамерный стеклопакет: ориентация компонентов и количество сторон

Поверхности однокамерного стеклопакета обычно нумеруют цифрами от 1 до 4 (снаружи внутрь), а для двухкамерного — от 1 до 6.

Определенного улучшения можно достичь посредством замены осушенного воздуха в полости (λ = 0,025 Вт/(мК), ρ = 1,23 кг/м3, при 10°C, т.е. при обычных условиях, описанных в стандарте EN 673) на теплоизоляционный газ, обладающий более низкой теплопроводностью, а также большей объемной массой для снижения конвекции (затрудняет перемешивание).

Теплоизолирующие газы снижают коэффициент Ug изолирующего стеклопакета на 0,2-0,3 Вт(м2K) и применяются исключительно в сочетании с низкоэмиссионными покрытиями. Таким образом достигается максимальное значение теплоизоляционных показателей.

На практике при производстве изоляционного стекла используется аргон (λ= 0,017 Вт/(мК), ρ = 1,70 кг/м3).

Стеклопакеты повышенной эффективности

Технологический прогресс, достигнутый в производстве высокоэффективных изоляционных покрытий играл ведущую роль в выводе на рынок целой линейки высокоэффективного изоляционного остекления.

Эти высокоэффективные теплоизоляционные покрытия называются низкоэмиссионными покрытиями (или low-e покрытиями) и представляют собой:

  • мягкие low-e покрытия, производимые магнетронным нанесением
  • твердые low-e покрытия, наносимые непосредственно на линии в процессе выпуска флоат-стекла.

Свойства низкоэмиссионного покрытия:

  • Нейтральный внешний вид
  • Высокая прозрачность (высокий уровень светопропускания)
  • Высокий уровень цветопередачи

Для сочетания теплоизоляционных и солнцезащитных свойств необходимо использовать иные типы покрытий, объединяющих обе эти функции.

AGC не рекомендует устанавливать на одной стене стандартные и высокоэффективные стеклопакеты по причине незначительного различия оттенков (связанного с наличием низкоэмиссионного покрытия), способного повлиять на внешний вид остекления в отраженном свете при определенных условиях.

По умолчанию низкоэмиссионное покрытие располагается на поверхности 3 (в позиции 3) однокамерного стеклопакета. Также возможна установка в позицию 2.

Низкоэмиссионное остекление

Стандартная алюминиевая дистанционная рамка может заменяться на на теплоизолирующую рамку («теплый край»). Теплоизоляционные свойства рамки «теплый край» значительно превосходят показатели стальных или алюминиевых рамок.

Использование дистанционной рамки («теплый край») не влияет на коэффициент теплопередачи стеклопакета Ug (соответствующий коэффициенту U, замеренному в центре стеклопакет в соответствии с EN 673), но влияет на коэффициент теплопередачи окна Uw, определяющий теплопотери окна в целом.

Энергоэффективные двухкамерные стеклопакеты

Теплоизоляция возрастает благодаря наличию инертного газа в межстекольном пространстве, теплоизоляционной рамки, а так же при добавлении камеры.

В двухкамерном стеклопакете, благодаря наличию второй камеры (дополнительного теплоизоляционного слоя), Ug обычно составляют от 0,5 до 0,7 Вт/(м2К), в зависимости от использованной конструкции (типа покрытий, газа, толщины дистанционной рамки и т.п.).

Компоненты и процессы, используемые для производства двухкамерных стеклопакетов аналогичны компонентам и процессам в производстве однокамерного остекления. В частности, применяется low-e покрытие, располагающееся обычно в позициях 2 и 5. Солнцезащитные свойства могут быть достигнуты путем использования соответствующих покрытий.

Основными недостатками двухкамерных стеклопакетов является их толщина, масса, пониженное светопропускание и общее пропускание солнечной энергии, связанные с увеличенным количеством листов стекла.

В связи с высоким уровнем теплоизоляции двухкамерных стеклопакетов рекомендуется проводить анализ риска термошока, особенно для среднего стекла.

Как и в случае с однокамерными стеклопакетами можно использовать дистанционные рамки «теплый край» для улучшения общих теплоизоляционных показателей.

2.4.4 Температура остекления и комфорт

Чувство комфорта в любом помещении зависит не только от окружающей температуры, но также и от близости холодных поверхностей. Человеческое тело с температурой (кожи) приблизительно 28°C отдает тепло, когда приближается к холодным поверхностям, таким как остекление с плохой теплоизоляцией. Возникает дискомфортное чувство холода.

На графике ниже приведены значения температуры внутренней поверхности одинарного остекления и различных типов стеклопакетов при наружной и внутренней температуре 0°C и 20°C соответственно (в стационарных условиях).

Видно, что использование энергоэффективного остекления не только ограничивает потери тепла, но и уменьшает чувство дискомфорта, вызванное близостью холодных поверхностей.

Изменение температуры внутренней стороны остекления зависит от значения коэффициента Ug

2.4.5 Конденсат на поверхности изоляционного остекления

На поверхности остекления могут возникать три типа конденсации:

  • поверхностная конденсация с внутренней стороны (поверхность 4 однокамерного стеклопакета / поверхность 6 двухкамерного стеклопакета): возникает при повышенной относительной влажности внутри помещения и/или низкой температуре внутренней поверхности остекления. При нормальных условиях внутри помещения (отапливаемое здание без отдельных источников влажности) подобный тип конденсации редко проявляется при использовании высокоэффективного изолирующего остекления
  • поверхностная конденсация на наружной стороне (поверхность однокамерного или двухкамерного стеклопакета): подобная конденсация может иногда возникать на рассвете на высокоэффективных изолирующих стеклопакетах, но только после ясной ночи при практически полном отсутствии ветра. В таких условиях, принимая во внимание повышенные теплоизоляционные свойства изолирующих стеклопакетов, наружный лист стекла остывает настолько, что на внешней поверхности выпадает конденсат. Это явление носит временный характер и подтверждает эффективность остекления
  • конденсация внутри стеклопакета: она указывает на дефект стеклопакета, поскольку он более не обеспечивает герметичности от пара и влаги.

Если влагопоглотитель утрачивает эффективность или герметик теряет герметичность, внутри стеклопакета образуется конденсат, и требуется замена стеклопакета.



Заказать услугу
Оформите заявку на сайте. Наш менеджер свяжется с вами для уточнения деталей.